Как машина ездит на водороде
Перейти к содержимому

Как машина ездит на водороде

  • автор:

Топливо из воды: какой транспорт в Европе уже ездит на водороде

Топливо из воды: какой транспорт в Европе уже ездит на водороде

На автомобили приходится 72% «транспортных» выбросов парникового газа СО2 в Европе; самолеты «ответственны» за 14%. А вот если заправить автомобиль или самолет водородом, то они будут ехать и лететь вообще не выбрасывая в атмосферу СО2. А значит – спасать планету от глобального потепления, которое уже стало приводить к природным катаклизмам. Поэтому в Европе и начали переводить транспорт на водородное топливо.

Как делают экологичное водородное топливо

Это топливо получают из воды. С помощью электричества ее расщепляют на основные элементы – водород и кислород. Если использовать для производства водорода альтернативную энергию (например, из солнца или ветра), то водород становится «зеленым» от и до: не только его использование, но и само производство не выбросит в атмосферу ни единого кубического миллиметра СО2. Водород внутри транспортного средства превращается в электричество, которое и служит собственно топливом (как у электрокаров). А при сжигании водорода в атмосферу попадает только водяной пар. В отличие от электроэнергии, водород можно хранить и использовать по мере необходимости. А кроме того, его производство не зависит от погодных условий, как энергия ветра или солнца.

Автомобили на водороде

В Европе уже ездит несколько сотен автомобилей на водороде. Их уже могло бы быть гораздо больше, но для них нужна инфраструктура – то есть заправочные водородные станции. Пока что их не хватает за немногими исключениями: например, Дания стала первой страной в мире с общенациональной сетью водородных заправок. Поэтому в Евросоюзе в 2017 году запустили проект H2ME, который стал строить по всей Европе водородные станции. Заправить бак там можно за 3-5 минут, а затем проехать на этом топливе 400-600 километров. Пока таких заправок всего 50 в нескольких странах, но это только начало. Поэтому к 2027 году по Европе будут ездить уже сотни тысяч водородных автомобилей. А по прогнозам ReThink Energy, к 2040 году в Европе появится 17 миллионов автомобилей на водородных топливных элементах. Начиная с 2035 года в странах Евросоюза больше нельзя будет купить автомобиль на бензине или дизеле – том топливе, которое выбрасывает в атмосферу парниковые газы. А к 2050 году в Европе вообще не останется «грязных» автомобилей. В первую очередь это будут электромобили, но и водородных будет достаточно. И не только автомобилей, но и легкого транспорта. Так, во Франции изобрели скутер, работающий на водороде. Чтобы его заправить, нужно просто заменить разряженный картридж на заряженный и не зависеть от заправочной станции.

А еще французская компания Hopium разработала спортивный автомобиль на водородном топливе. Если все пойдет по плану, он сможет победить Tesla в гонке по снижению парниковых выбросов CO2. Французские спорткары выпустят в продажу в 2025 году, а пока что компания принимает предзаказы на первые 1000 автомобилей.

Поезда на водороде

С 2018 года в Германии можно сесть на первый в мире водородный поезд Coradia iLint. Он развивает скорость до 140 километров в час и может преодолеть почти тысячу километров без дозаправки – примерно столько же, сколько поезда на дизеле. Пока что по Германии курсируют два водородных поезда. Разработчик этих поездов, французская компания Alstom, поначалу собиралась построить еще 14. Но поезда на водороде оказались настолько востребованными, что в 2020 году немецкие железнодорожные компании заказали уже 41 водородный поезд. В Португалии тоже есть поезд на водороде, всего один, зато какой: винтажный Vouginha, на котором летом можно прокатиться в Порту. Этот исторический поезд ходит по последней оставшейся в Португалии узкоколейной железной дороге, а его вагоны сохранились с 1908 года.

Общественный транспорт на водороде

В европейских городах на маршруты начинает выходить водородный общественный транспорт – хотя и только в пилотном режиме. Например, в Эстонии появились беспилотные микроавтобусы на водородном топливе, а по Риге ездят 10 троллейбусов, которые используют водород на случай отключения электричества или поломки. Такой троллейбус курсирует без дозаправки весь день, только к вечеру заезжая на пока что единственную в Риге заправочную станцию (на ней заправляются и частные авто). Есть в Риге и водородный автобус – пока он ходит по одному маршруту в тестовом режиме: нужно оценить, сколько топлива ему понадобится зимой, когда потребуется отапливать салон. Через два года в Риге уже 12 автобусов будут ездить на водороде. А в Копенгагене появились «водородные» такси. Таксопарк, правда, пока что небольшой — всего на 20 автомобилей. Коммунальная техника тоже начала переходить на водород. Например, во Фрайбурге (Германия) появились два водородных мусоровоза.

Самолеты на водороде

Это пока дело будущего, но уже сейчас идут активные разработки водородных самолетов. Например, во Франции европейская компания Airbus создала три прототипа коммерческого самолета на водороде. Конструкция одного из них позволяет безопасно хранить водородное топливо, поэтому такой самолет сможет поднять в воздух до 200 человек для перелета на 3,7 тысячи километров — в отличие от двух других моделей, рассчитанных на 100 пассажиров при той же дальности маршрута. Конструкторы того же Airbus разработали съемный водородный двигатель для самолетов, который позволит не зависеть от наземной инфраструктуры. Водородное топливо в него не закачивается, а устанавливается в переносных капсулах. Поэтому самолеты с такими двигателями смогут заправляться в аэропортах без устройств для подачи водородного топлива. В прошлом году Евросоюз объявил новую инициативу RefuelEU: поиск решений для экологически чистой авиации. Теперь перед Евросоюзом стоит задача перевести до 1-2% европейских самолетов на «зеленое» топливо, в том числе на водород.

А хватит ли водорода для транспорта?

К 2030 году Евросоюз собирается ежегодно производить 40 гигаватт водородной энергии, а к 2050 году водород будет обеспечивать четверть всей потребности в энергии. Этого водорода хватит, например, чтобы обеспечить экологичным топливом 42 миллиона автомобилей, 1,7 миллиона грузовиков, около 500 тысяч автобусов и более 5,5 тысяч поездов. Это часть «Водородной стратегии для климатически нейтральной Европы»: там Евросоюз определил водород в качестве одной из шести ключевых стратегических областей, где необходимы серьезные инвестиции.

Где в Европе производят водород?

Пять стран Евросоюза делают серьезную ставку на производство водородной энергии: это Германия, Италия, Португалия, Испания и Франция. Например, Германия к 2030 году собирается делать восьмую часть всего водорода в Евросоюзе. В Германии же через два года появится крупнейший в мире хаб для хранения «зеленого» водородного топлива. А Испания хочет сделать водород главным источником энергии к 2050 году – и это позволит стране на 100% сократить выбросы углекислого газа. Через 9 лет Испания собирается производить 10% от общего объема в ЕС. И прежде всего водород в Испании собираются использовать как транспортное топливо. В 2030 году в стране на водороде будут ездить 5 тысяч частных автомобилей, 150 автобусов и поезда на двух железнодорожных маршрутах. Причем не меньше 25% этого экологичного топлива должно приходиться на «зеленый» водород – выработанный без использования углеродных источников вроде нефти. Исключительно «зеленый» водород будут делать на Майорке: этот испанский остров станет первым центром водородной энергетики в Средиземном море. Там будут тестировать инновационные подходы к производству «зеленого» водорода, и найденные решения потом можно будет применить и на других средиземноморских островах. Чем больше водород будет заменять собой неэкологичное топливо, тем ближе Евросоюз окажется к своей цели сделать свою территорию климатически нейтральной. Россия тоже решила не отставать от глобального тренда. Летом прошлого года Минэнерго разработало дорожную карту «Развитие водородной энергетики в России»: в частности, в 2024 году Газпром и Росатом начнут производить «зеленый» водород.

Как работает водородный двигатель и какие у него перспективы

Фото: Shutterstock

Автомобили с водородными двигателями называют главными конкурентами электрокаров. Но у технологии пока что немало минусов, и, например, основатель Tesla Илон Маск называет ее «тупой и бесполезной». Прав он или нет?

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей. Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

Фото:Shutterstock

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды. Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде. В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС. В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде. Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8]. Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода. В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов. В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км. Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Toyota Mirai 2016 года выпуска

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника. Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

Схема работы водородного двигателя

Схема работы водородного двигателя

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Как работает водородный двигатель внутри Toyota Mirai

Где применяют водородное топливо?

  • В автомобилях с водородными и гибридными двигателями. Такие уже выпускают Toyota, Honda, Hyundai, Audi, BMW, Ford, Nissan, Daimler;
  • В поездах. Первый такой был выпущен в Германии компанией Alstom и ходит по маршруту Букстехуде — Куксхафен;
  • В автобусах: например, в городских низкопольных автобусах марки MAN.
  • В самолетах. Первый беспилотник на водороде выпустила компания Boeing, внутри — водородный двигатель Ford;
  • На водном транспорте. Siemens выпускает подводные лодки на водороде, а в Исландии планируют перевести на водородное топливо все рыболовецкие суда;
  • Во вспомогательном транспорте. Водород используют в электрокарах для гольфа, складских погрузчиках, сервисных автомобилях логистических компаний и аэропортов;
  • В энергетике. Электростанции мощностью от 1 до 5 кВт, работающие на водороде, могут обеспечивать теплом и энергией небольшие города и отдельные здания. Например, после аварии на Фукусиме в 2018 году Япония активнее начала переходить на водородную энергетику [9], планируя перевести на водород 1,4 млн электрогенераторов;
  • В смесях с обычным топливом. Например, с дизельным или газовым — чтобы удешевить производство.

Фото:Александр Демьянчук / ТАСС

Плюсы водородного двигателя

  • Экологичность при использовании. Водородный транспорт не выбрасывает в атмосферу диоксид углерода;
  • Высокий КПД. У двигателя внутреннего сгорания (ДВС) он составляет около 35%, а у водородного — от 45%. Водородный автомобиль сможет проехать на 1 кг водорода в 2,5-3 раза больше, чем на эквивалентном ему по энергоемкости и объему галлоне (3,8 л) бензина;
  • Бесшумная работа двигателя;
  • Более быстрая заправка — особенно в сравнении с электрокарами;
  • Сокращение зависимости от углеводородов. Водородным двигателям не нужна нефть, запасы которой не бесконечны и к тому же сосредоточены в нескольких странах. Это позволяет нефтяным государствам диктовать цены на рынке, что невыгодно для развитых экономик.

Минусы водородного двигателя

  • Высокая стоимость. Галлон бензина в США стоит около $3,1 [10], а эквивалентный ему 1 кг водорода — $8,6. Водородные батареи содержат платину — один из самых дорогих металлов в мире. Дополнительные меры безопасности также делают двигатель дорогим: в частности, специальные системы хранения и баки из углепластика, чтобы избежать взрыва.
  • Проблемы с инфраструктурой. Для заправки водородом нужны специальные станции, которые стоят дороже, чем обычные.
  • Не самое экологичное производство. До 95% сырья для водородного топлива получают из ископаемых [11]. Кроме того, при создании топлива используют паровой риформинг метана, для которого нужны углеводороды. Так что и здесь возникает зависимость от природных ресурсов.
  • Высокий риск. Для использования в двигателях водород сжимают в 850 раз [12], из-за чего давление газа достигает 700 атмосфер. В сочетании с высокой температурой это повышает риск самовоспламенения.

Водород обладает высокой летучестью, проникает даже в небольшие щели и легко воспламеняется. Если он заполнит собой весь капот и салон автомобиля, малейшая искра вызовет пожар или взрыв. Так, в июне 2019 года утечка водорода привела к взрыву на заправке в Норвегии. Сила ударной волны была сопоставима с землетрясением в радиусе 28 км. После этого случая водородные АЗС в Норвегии запретили

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

Фото:из личного архива

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

С одной стороны, в Европе Toyota Mirai II стоит несколько дешевле, чем Tesla Model S (€64 тыс. против €77 тыс.) [18]. Полная зарядка водородного автомобиля занимает около 3 минут — против 30-75 минут для электрокара. Однако вся разница — в обслуживании: Toyota Mirai вмещает 5 кг водородного топлива [19] по цене $8-9 за кг. Таким образом, полный бак обойдется в $45, и его хватит на 500 км — получаем около $9 за 100 км пробега. Для Tesla Model S те же 100 км обойдутся всего в $3.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

  1. Лобби со стороны развитых государств: в США [22], ЕС [23], Японии [24], России [25] и других странах приняты законы в поддержку экологичного транспорта.
  2. Удешевление аккумуляторов: согласно исследованию Bloomberg New Energy Finance, за последние десять лет цены на литий-ионные аккумуляторы упали с $1200 до $137 за кВт·ч.
  3. Развитие инфраструктуры: специальные электрозарядные станции и зарядки в крупных бизнес-центрах, на парковках ТЦ и аэропортов.

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Согласно прогнозу Markets&Markets [28], к 2022 году объем мирового производства водорода вырастет со $115 до $154 млрд. Остается главный вопрос: как быть с инфраструктурой? Чтобы водородные двигатели стали массовыми, нужны сети заправок, трубопроводы для топлива, отлаженные логистические цепочки. Все это пока только зарождается. Но и тут есть позитивные сдвиги: например, канадская Ballard Power по заказу китайского Министерства транспорта запустила пилотный проект, в рамках которого водородное топливо можно будет заливать в обычные АЗС.

Справочная: как работают водородные автомобили и когда они появятся на дорогах

В Испании, где я сейчас живу, довольно много электромобилей — встречаю их практически каждый день, как на дорогах, так и на станциях для зарядки. И каждый год электрокаров становится все больше (не только в Испании, конечно). Но есть и альтернатива — автомобили на водородном топливе, которые тоже не загрязняют природу, поскольку их выхлоп — вода. Тема сегодняшней справочной — водородные машины, принцип их работы и перспективы.

Когда появились первые автомобили на водороде?

Изобрел двигатель внутреннего сгорания, работающий на водороде, Франсуа Исаак де Ривас (François Isaac de Rivaz) в 1806 году. Водород он получал с помощью электролиза воды. Поршневой двигатель, который создал изобретатель, называют машиной де Риваса (De Rivaz engine).

Зажигание было искровым, двигатель имел шатунно-поршневую систему работы. Ну а цилиндр приводился в движение детонацией смеси водорода и кислорода электрической искрой — ее приходилось генерировать вручную в момент опускания поршня. Через два года этот же изобретатель построил уже самодвижущееся устройство с водородным двигателем.

Но более-менее широко применять водород для работы автомобильных двигателей стали много лет спустя. В 1941 году в блокадном Ленинграде автомобильные двигатели ГАЗ-АА были модифицированы инженер-лейтенантом Б. И. Шелищем. Движки управляли лебедками аэростатов заграждения (их заправляли водородом, и запасов газа в Ленинграде было много), но это были автомобильные двигатели. Кроме того, были модифицированы и несколько сотен движков в автомобилях.

Начиная с 1980-х сразу в нескольких странах, включая США, Японию, Германию, СССР и Канаду стартовало экспериментальное производство по созданию автомобилей, работающих на водороде, бензин-водородных смесях и смесях водорода с природным газом.

В 1982 году нефтеперерабатывающий завод «Квант» и завод РАФ разработали первый в мире экспериментальный водородный микроавтобус «Квант-РАФ» с комбинированной энергоустановкой на основе водородо-воздушного топливного элемента мощностью 2 кВт и никель-цинковой аккумуляторной батареи емкостью 5 кВт*ч.

На протяжении многих лет такие автомобили разрабатывали в разных странах по большей части в качестве эксперимента. После того, как концепция «зеленого» автомобиля стала популярной, автомобилями на водороде заинтересовались крупные корпорации вроде Toyota. Начиная с 2000-х, автомобильные компании стали разрабатывать концепты коммерческих авто.

А где брать водород?

Водород можно получать разными методами:

  • паровая конверсия метана и природного газа;
  • газификация угля;
  • электролиз воды;
  • пиролиз;
  • биотехнологии.

При паровой конверсии водород получать дешевле, чем используя любые другие методы, включая электролиз.

Наиболее безвредный способ производства водорода — электролиз — получение водорода из воды с использованием электрического тока. Чистота выхода водорода близка к 100%. Если не считать загрязнение для получения электричества, такие установки почти безвредны для окружающей среды, поскольку в процессе работы выделяются только водород и кислород.

Еще один безопасный для окружающей среды способ получения водорода — реактор с биомассой.

Источник

Производить водород можно и на крупной фабрике, и на относительно небольшом предприятии. Чем масштабнее производство — тем ниже себестоимость газа. Но зато в первом случае увеличиваются расходы на доставку водорода к местам заправки машин.

Как работает топливная система и какие есть варианты?

Лучше всего рассмотреть принцип работы такой системы на примере серийных водородных авто Toyota Mirai. Основа — топливный элемент, электрохимическая система, преобразующая частицы водорода и кислорода в воду. Внутри такого элемента — протонпроводящая полимерная мембрана, которая разделяет анод и катод. Обычно это угольные пластины с нанесенным катализатором.

На катализаторе анода молекулярный водород теряет электроны, катионы проводятся через мембрану к катоду, а электроны отдаются во внешнюю цепь. На катализаторе катода молекулы кислорода соединяются с электроном и протоном, образуя воду. Пар или жидкость — это единственный продукт реакции.

Преимущество топливных ячеек на основе протонообменных мембран — высокая удельная мощность и относительно низкая рабочая температура. Они быстро греются и почти сразу после старта начинают производить энергию.

В Mirai используются топливные элементы с высокой удельной мощностью на единицу объема (3,2 кВт/л), максимальная их мощность 124 кВт. Произведенный топливным элементом постоянный ток преобразуется в переменный с одновременным повышением напряжения до 650 В. Электричество поступает в литий-ионный аккумулятор. Для движения машина расходует запасенную в нем энергию.

Водород в топливный элемент Mirai поступает из баллонов высокого давления (около 700 атм). Блок управления в автомобиле контролирует режим работы топливного элемента и зарядку/разрядку аккумулятора.

По данным Toyota на 100 км пути Mirai требуется до 750 граммов водорода. Владельцы Mirai говорят о примерно килограмме водорода на 100 км пути.

Такие автомобили опасны? Почему?

Поскольку водород — горючий газ, то транспортировать и хранить его нужно осторожно. Нужны высокочувствительные газоанализаторы, которые смогут дать сигнал в случае утечки. Правда, водород очень летучий газ (ведь это самый легкий химический элемент) и при попадании в атмосферу водород быстро поднимается вверх.

Сгорает он очень быстро. Дирижабль «Гинденбург» горел всего 32 секунды. Благодаря скоротечности пожара погибли далеко не все пассажиры, выжили 62 человека из 97, находившихся в гондоле дирижабля.

Тем не менее, если автомобилей на водороде станет много, то потребуются новые меры безопасности движения на дорогах. Машины с ДВС тоже опасны — в случае аварии и пробоя бака бензин или дизельное топливо вытекают на дорогу и могут воспламениться. Если будет пробит бак с водородом, газ очень быстро улетучится. Но если близко будет источник открытого огня или искр, водород может загореться.

В Mirai и других моделях водородных авто используются очень прочные баки для водорода. Toyota сделала свои баки пуленепробиваемыми, их стенки из сверхпрочного волокна выдерживают выстрелы из крупнокалиберного оружия. Для тестов компания наняла снайперов и пробить бак смогла только пуля калибром .50 после двойного попадания в одно и тоже место.

Если соблюдать меры безопасности, водородные автомобили не опаснее машин с ДВС.

Какой срок службы у топливных ячеек?

Пока что такая информация есть лишь для Mirai. Toyota заявляет, что одна ячейка гарантированно будет работать на протяжении 250 000 км. Затем, если работа ячейки ухудшается, ее можно заменить в сервисном центре.

Какие компании уже выпускают или собираются выпускать автомобили на водороде?

Водородные машины разрабатывают Honda, Toyota, Mercedes-Benz и Hyundai — у этих компаний уже есть готовые транспортные средства. Другие показывают пока лишь концепты (впрочем, рабочие) или просто красиво отрендеренные картинки. К числу первых можно отнести Audi и Ford, к числу вторых — BMW (справедливости ради нужно сказать, что в 2007 году BMW выпустила партию из 100 экспериментальных «водородных» моделей, которые так и остались экспериментом) и Lexus.

В серию запущены пока лишь Toyota Mirai и Honda Clarity. Их можно приобрести в США и Европе.

Сколько это стоит?

В настоящий момент водородные автомобили немного дороже обычных в плане эксплуатации. Так, при поездке в Европе протяженностью 480 км затраты на горючее для владельца обычной машины составят примерно $45, а вот владелец Mirai заплатит около $57. И это при том, что правительство некоторых стран субсидирует производство водорода для машин. Стоимость 1 кг водорода составляет в среднем $11.45.

Чем водородные авто лучше электромобилей?

Собственно, вопрос не совсем корректный. Дело в том, что и автомобиль на водороде, с топливной ячейкой, и «чистый» электрокар — это электромобили. Просто в одном случае машину заправляют водородом, во втором — электричеством.

Если сравнивать стоимость большинства электромобилей и Toyota Mirai, то они сравнимы, это несколько десятков тысяч долларов США. Стоимость Hyundai ix35 Fuel Cell составляет около $53 тыс., Toyota Mirai — $57 тыс., Honda Clarity — $59 тыс. Стоимость электрокаров Tesla начинается с $45 тыс. (базовая комплектация с прайсом в $35 тыс. пока доступна лишь для предзаказа). Электромобили от BMW стоят около $50 тыс.

Водородные автомобили быстро заправляются — на это уходит всего 3–5 минут, в отличие от электромобилей, где нужно от получаса до нескольких часов для подзарядки.

Основное достоинство водородного транспорта в том, что топливные ячейки служат много лет и практически не нуждаются в обслуживании. Если взять «чистый» электромобиль с его огромной батареей, то ее срок службы всего 1–1,5 тыс. циклов, то есть 3-5 лет. Причем водородный автомобиль без проблем будет работать на морозе (заводиться в том числе), а вот аккумулятор электромобиля потеряет заряд.

Какие перспективы у водородных машин и когда их можно будет увидеть на дорогах?

Водородные автомобили уже колесят по дорогам Европы и США (возможно, единичные экземпляры есть и в других регионах). Но их немного — несколько тысяч, что нельзя назвать массовым внедрением.

Проблема, которая сейчас мешает распространению водородных транспортных средств — отсутствие инфраструктуры (всего несколько лет назад аналогичная проблема была актуальной и для электромобилей). Нужны специализированные фабрики по производству водорода, транспортные системы для водорода и заправки.

Водородные АЗС в 2019 году(источник)

Кроме того, водород получается довольно дорогим, так что если электромобили покупают, в частности, для экономии на топливе, то в случае водородной машины — это не вариант. При массовом появлении фабрик по производству водорода для машин, а также сервисной инфраструктуры можно ожидать выхода гораздо большего числа транспортных средств на водороде на дороги общего пользования.

Но нет гарантии, что это вообще случится ли это или нет — пока неясно. Автопроизводители вроде Toyota активно продвигают свои машины и преимущества водорода в транспортной сфере. Но конкуренция слишком велика, как среди обычных машин с ДВС, так и среди электромобилей.

  • Автомобильные гаджеты
  • Транспорт
  • Экология
  • Будущее здесь

Поедем на водороде? Как обстоят дела с самыми экологически чистыми электромобилями

Продажи электрокаров растут, даже несмотря на пандемию COVID-19. Так, за 2020 год было реализовано 3,1 млн штук по всему миру — их доля в общем объеме составила почти 5% против 2,5% в 2019 году. При этом 2,2 млн пришлось на экологически чистые электромобили и более 900 тыс. — на подзаряжаемые гибриды (PHEV).

Но по-прежнему 95% проданных машин оснащено двигателями внутреннего сгорания. Дело в том, что нерешенными остаются ключевые вопросы, связанные с емкостью батареи (и соответственно, пробегом автомобиля), длительностью зарядки, инфраструктуры… И главная проблема — откуда мы получаем электроэнергию для такого автомобиля?

В большинстве случаев она вырабатывается на тепловых электростанциях — за счет сжигания топлива. Выходит, мы просто обманываем сами себя: экологические проблемы не решаются, а просто переносятся из «чистых» городов, где бегают электромобили, в районы, где добывают нефть, газ, уголь, и сжигают их.

На этом фоне ведущие автопроизводители продолжают осваивать проекты, основанные на использовании водорода как топлива.

Разобраться в терминах

Для начала обозначим: водородомобиль — это в любом случае электромобиль, потому что его приводит в движение электромотор. Просто электроэнергия получается не из розетки, а в ходе химической реакции с водородом. Эта реакция проходит внутри ячеек топливных элементов, куда подаются водород и кислород. Так получается электричество, которое передается на электромотор и приводит в действие колеса и все остальные системы. Отмечу, что реакция происходит без процесса горения, а «выхлоп» представляет собой безвредный водяной пар, что вполне вписывается в концепцию «нулевого выхлопа».

Читайте также
В Госдуме предрекли «мучения» с водородным топливом из-за высокой опасности

Мир получит и другие плюсы в случае распространения электроводородных автомобилей. Например, освобождение от технического обслуживания в нынешнем понимании. Ведь менять масло, другие технические жидкости, как сейчас в двигателе внутреннего сгорания или трансмиссии, не придется. Не нужны будут и свечи, системы охлаждения, нейтрализации отработанных газов и многое другое. Уйдет в прошлое тяжелый и дорогой аккумулятор, цена которого сегодня составляет треть, а то и половину стоимости электромобиля. Теоретически все это положительно скажется как на стоимости эксплуатации, так и на экологии.

По эффективности бензин, дизтопливо или любая современная батарея, как говорится, с водородом и рядом не стояли — 1 г водорода дает в три раза больше энергии, чем 1 г бензина. От этого многократно выше и стартовый крутящий момент, увеличен запас хода, а выброс СО 2 и тяжелых металлов равен нулю. Вместо серы и окислов азота в атмосферу улетают кислород и водяной пар. Кроме того, водородные двигатели практически бесшумны.

Где добывают водород?

Чтобы электроводородомобиль поехал (буду обозначать его как ЭВМ), должна произойти химическая реакция, соответственно, для этого его нужно заправить водородом. Но прежде же этот водород откуда-то необходимо взять — в чистом виде в природе водород не встречается, его нужно получить с помощью химических реакций. Распространенный сегодня способ (кстати, относительно экономически выгодный) — выделение его из воды (пара) в процессе сжигания природного газа при высокой температуре (700–1000 ºС) и под давлением. Правда, при этом выделяется вредный углекислый газ. Словом, не просто этот способ назвать высокоэкологичным.

Читайте также
Химики создали катализатор для мгновенной дезинфекции воды

Увы, полностью экологичных способов производства водорода пока разработано не так много. А те, что есть, чудовищно дороги. Так, даже «промышленный» водород примерно в три раза дороже бензина. Хотя за последние 15 лет за счет разработки новых технологий уже удалось снизить его стоимость на мировом рынке с $250 до $30 за литр — это далеко не предел.

Также из нелицеприятных сторон водорода можно назвать то, что он считается очень взрывоопасным, ведь давление газа в баллоне достигает 700 атмосфер, а для поддержки жидкого состояния требуется температура ниже –250 ºС. Правда, кроме впечатляющих цифр сжатия и повышенной летучести он ничем не отличается от других газов, включая пропан, бутан, метан, кислород и азот, но ведь научились с ними работать. Так что водород нужно рассматривать как обычное газомоторное топливо, отличающееся (от пропана и метана) только чистотой выброса, энергетической мощностью и более низкой ценой (в перспективе).

Сегодня в мире уже находят неплохие ответы на тревожащие вопросы относительно водорода. Например, последние исследования показывают, что более эффективно его хранить в гидридах (соединениях водорода с другими химическими элементами). В связи с чем разрабатываются системы хранения на основе гидридов магния — сплавы поглощают водород в больших количествах и освобождают его при нагреве (очень похоже на замерзшую воду в поролоновой мочалке). По сути, водородный бак, образно говоря, становится электрической батареей, которая в 100 раз эффективнее самой современной литиевой.

«Конечно, есть проблемы технические, количество специальных водородных заправок очень невелико, такое топливо пока остается дорогим. Но специалисты говорят, что эти задачи уже чисто инженерного характера и решить их можно будет примерно за пять лет», — уверяет доктор экономических наук, основатель группы компаний «Автотор» Владимир Щербаков.

На чем поедем?

Говорят, что количество «водородных» АЗС в Европе растет довольно быстро. Хоть потребителей этого топлива совсем мало, да и пока имеются все же проблемы с техникой безопасности. Ведь не будем забывать, что он взрывоопасен и его хранение на заправочной станции требует соблюдения повышенных мер безопасности, что тянет за собой удорожание и усложнение создания водородных заправок.

Читайте также
Андрей Клепач: протекционизм становится все более «зеленым»

Первые «водородные» АЗС в Германии появились лет 15 назад. Сейчас же в ФРГ работает около 100 таких заправок, а к 2023 году их число должно вырасти до 400 и более. Стоимость соответствующего проекта оценивается свыше €400 млн — по миллиону на каждую АЗС. Большую часть средств инвестируют фирмы Toyota, Honda, BMW, Volkswagen и Daimler. Например, в Японии таких АЗС уже около 200.

Увы, в России работает пока только одна водородная заправка (и то в тестовом режиме) — в Подмосковье, в Черноголовке, на территории одного из НИИ. При этом по итогам прошлого года у нас в российском автопарке числился также всего один легковой автомобиль с водородными топливными элементами (не российского производства).

В целом же эксперименты с водородной темой в автосфере начались еще в прошлом веке. Все ведущие автопроизводители начали разрабатывать модели на альтернативных топливных элементах. Между прочим, занимались этой темой и на нашем «Автовазе». Направление называлось АНТЭЛ — «автомобиль на топливных элементах».

Помню даже «Ниву» и универсал ВАЗ-2111, которые возили по разным выставкам. Но тема эта в Тольятти уже несколько лет как закрыта. А жаль! Ведь в мире уже серийно выпускается несколько моделей.

Первенцем стала модель Toyota Mirai, которую в Японии продают с конца 2014 года, в США и Европе — с конца 2015 года. На сегодняшний день это самый распространенный в мире ЭВМ, который выпускает уже второе поколение модели. Основным рынком сбыта являются США, но продается ЭВМ также в Европе, Японии и Канаде.

Правда, очень популярной модель не назовешь, даже если учитывать, что существуют очень серьезные дотации для покупателей со стороны производителя (компенсирует государство). Цена Toyota Mirai в США стартует с отметки $58 тыс., при этом покупатель получает на депозит $15 тыс. на заправку водородом (эти деньги надо потратить в течение трех лет). По данным 2020 года, выпущено и продано по всему миру около 6 тыс. штук Mirai.

Модель другого японского концерна, Honda Clarity, продается с 2016 года. В ход машину приводит электродвигатель мощностью 174 л.с. Водород хранится в баке под давлением 690 атмосфер. По разным данным, на одной заправке можно проехать от 500 до 750 км. Депозит на заправку такой же — $15 тыс.

В Южной Корее выпущена опытная партия водородных кроссоверов Hyundai Nexo (около тысячи штук). Есть перспективные модели и у немцев — Mercedes-Benz GLC F-Cell и BMW X5 i Hydrogen Next. Прошлым летом первый в мире тяжелый грузовик на водородных топливных элементах начал продавать Hyundai. Выпуск автобуса и грузового фургона освоила в Китае компания Foton.

Читайте также
За нефтяным горизонтом. Как России сохранить позиции на мировых рынках при энергопереходе

Таким образом, сейчас по дорогам мира движется уже несколько тысяч автомобилей на водородном топливе. Но повторю, что спрос на такую технику весьма ограниченный. Причины понятны: высокая цена и ограниченность поездки из-за малого количества АЗС. Есть проблемы и с эксплуатацией в холодном климате (конкретно — с холодным пуском). Производители новейшего Hyundai Nexo, например, обещают беспроблемный пуск только при температуре выше –6 ºС. Но эти проблемы, думаю, через несколько лет уже решат.

Есть пророки в своем отечестве

В России сегодня нет никакого официального документа, в котором бы определялось отношение государства к автомобилям с альтернативными источниками (в том числе на водородных элементах). Несколько лет назад в Министерстве промышленности и торговли подготовили общую концепцию развития автопрома. Но, по мнению многих специалистов, она устарела еще до ее утверждения в 2018 году.

Сейчас, по разной информации, целых три ведомства пишут новые концепции развития в нашей стране транспорта на альтернативных видах топлива (Минэкономразвития, Минпромторг и Минэнерго), и даже мелькает цифра — сколько надо будет потратить в итоге: порядка триллиона рублей.

Так, министр промышленности и торговли РФ Денис Мантуров в недавнем интервью ТАСС пообещал, что в России начнут производить машины на водородных топливных элементах уже в 2024 году. По его мнению, первыми водородными транспортными средствами, которые начнут собирать в нашей стране, станут автобусы.

Такой выбор не удивителен, ведь в декабре 2020 года президент РФ Владимир Путин поручил начать производство городского транспорта на водородных элементах, правда, к 2023 году. Тогда руководители «Камаза» сразу отрапортовали, что конструкторские разработки уже ведутся.

Читайте также
А ввоз и ныне там: какие новые препятствия появились на пути электрокаров в Россию

Также заместитель министра промышленности и торговли Михаил Иванов пообещал, что в период с 2025 до 2030 года в России построят до 1,2 тыс. заправок для водородных автомобилей.

Сложно оценить реальность таких заявлений, ведь очень мало информации о том, как далеко продвинулись наши ученые из военно-промышленного комплекса в разработке элементов хранения водорода; не ведаем, что за наработки по промышленному (и экологически чистому) получению водорода есть у российских ведущих нефтегазовых компаний.

«Главная проблема — это не отсутствие научных и инженерных кадров, новых разработок в стране. В том числе на водородных элементах. Проблема в том, что правительство не ставит задачу к 2025 году, например, освоить серийное производство электромобилей. Ни на обычных элементах, ни на топливных, ни в действующей концепции, ни в программе развития автопрома, ни в специнвестконтрактах (СПИК) с автопроизводителями до 2030 года такой цели нет, — объясняет Владимир Щербаков. — Вместо серьезного обсуждения, что и как нужно сделать, чтобы занять достойное место в мировой гонке, все друг другу объясняют, почему электродвигатель для России не подходит. Одни доказывают, что электробатареи слишком дорогие и запас энергии может обеспечить только небольшой пробег. Но как-то при этом забывают, что Россия — один из главных в мире обладателей ресурсов, из которых эти батареи изготавливаются: лития, магния, кадмия, железа, титана, редкоземельных металлов. И просто стыдно не создать лучшие технологии их переработки».

Но, похоже, разработки в стране действительно идут. На днях объявили, что совсем скоро, в начале 2022 года, будут запущены в эксплуатацию водородные электромобили на базе «ГАЗели Next». Но — в Германии. Проект реализуется с 2019 года совместно с немецким партнером «Группы ГАЗ» — компанией ElektrofahrzeugeStuttgart (EFA-S). ЭВМ создается на шасси «ГАЗель Next» полной массой 4,6 т с двухрядной кабиной. Запас хода у такого автомобиля, как обещают, будет достигать 500 км.

Почему же отечественный производитель технику, разработанную по собственной технологии, производит за рубежом? Ответ выше — отсутствие четкой концепции на верхах.

Читайте также
Альтернативные источники. Как мир идет по пути отказа от нефти

Однако, если честно, несмотря на то что работы по созданию автомобилей на альтернативных видах топлива в мире ведутся давно, до сих пор у инженеров и других специалистов нет четкого понимания, как в будущем будет выглядеть автомобиль и на каком источнике энергии он поедет. В Honda, например, делают ставку на водород, а в Toyota разрабатывают как обычные электромобили, так и ЭВМ. При этом не спешат отказываться и от привычных ДВС, совершенствуя их. В то время как многие их коллеги из европейских компаний уже объявили, что больше двигателями внутреннего сгорания принципиально заниматься не будут.

Спросил ли при этом кто-то конечного потребителя — что ему надо? Ведь ему все эти высоконаучные споры неинтересны. Его, может, вполне устраивает автомобиль с ДВС — простой, надежный, недорогой, с пробегом не в 200 км, а в тысячу. А привлечь внимание автомобилиста туманными «экологическими перспективами» без экономической выгоды и комфортной эксплуатации — задача крайне труднодостижимая. Разве что предложить большие дотации (за счет его же налогов, между прочим)?

Мнение редакции может не совпадать с мнением автора. Использование материала допускается при условии соблюдения

цитирования сайта tass.ru

© Информационное агентство ТАСС

Свидетельство о регистрации СМИ №03247 выдано 02 апреля 1999 г. Государственным комитетом Российской Федерации по печати.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *