Как работают водородные топливные элементы
Перейти к содержимому

Как работают водородные топливные элементы

  • автор:

Водородные топливные элементы – технология будущего в автомобильной промышленности

Работа водородных топливных элементов относительно проста. Их работа интересна тем, что для сгорания нужны только вода и энергия. Как мы знаем, экологический аспект имеет решающее значение для автомобилестроения в 21 веке. Узнайте, как работают современные водородные приводы и как решения Knauf могут поддержать их производительность.

Экологичная двигательная установка – как работают водородные топливные элементы?

Водород – первый элемент периодической таблицы. Это самый легкий и распространенный химический элемент во Вселенной. Его много на Земле, но в чистом виде он редко встречается. Однако его можно найти во многих других соединениях, в том числе и в воде.

Водород может использоваться в качестве топлива для различных транспортных средств – от скутеров и автобусов до космических ракет. Схема реакции, которая возникает при сжигании чистого газообразного водорода в кислороде, выглядит следующим образом:

Поэтому процесс здесь чрезвычайно чистый – не образуется никаких дополнительных соединений, например, CO2 или других вредных веществ. Энергии, получаемой при сжигании водорода, достаточно для приведения в действие автомобиля. Несмотря на это, использование водорода в качестве экологически чистого источника энергии создает серьезную проблему: батареи, работающие на водороде, не являются экологически чистыми. Это связано с доступностью водорода – при имеющихся у нас условиях он лишь изредка доступен в форме, пригодной для использования в двигателях. Это означает, что мы должны получать его альтернативным способом. Существует несколько методов, но два из них стоит различать:

  • Производство природного газа – паровое преобразование. Пар сочетается с метаном, в результате чего из моноксида углерода и водорода образуется синтез-газ. В ходе этого процесса выделяется значительное количество окиси углерода, но, несмотря на это, это все же более экологичный метод, чем сжигание ископаемого топлива.
  • Зеленое производство водорода – это метод, основанный на возобновляемых источниках энергии. Высокая мощность электролизатора позволяет превращать воду в водород и кислород. Этот метод не способствует образованию химических соединений, вредных для окружающей среды.

Факты о водородной двигательной установке – технология будущего или пережиток прошлого?

Водород, как сырье для производства автомобилей, является предметом дебатов на протяжении многих лет. Сегодня, однако, мы особенно близки к тому, чтобы широко использовать этот элемент для обеспечения высокой тяговой мощности. В настоящее время это решение не пользуется особой популярностью – в основном оно используется в больших автобусах. На рынке всего несколько тысяч автомобилей; чаще всего это демонстрационные автомобили или модели из частных коллекций.

Водородный двигатель, однако, страдает не от недостатка потенциала развития, а от отсутствия соответствующих исследований в этой области. Потенциал этого сырья признан большинством энергетических организаций. Поэтому ведутся передовые работы, направленные на то, чтобы сделать водородный топливный двигатель не только более эффективным, но и более доступным для ежедневного использования.

В настоящее время водородные технологии представляют интерес для тех стран, которые в наибольшей степени привержены программам климатических реформ, рассматривая это сырье как столь необходимую альтернативу электричеству. Однако пока еще не ясно, в какой степени энергетические установки смогут удовлетворить мировые потребности в эпоху электромобильности. Революция электромобилей, вероятно, потребует от нас полной реструктуризации транспорта и разработки альтернатив, которые позволят сотням тысяч электромобилей безопасно пользоваться электросетью. Возможно также, что водород, как высокопотенциальное сырье, навсегда останется в автомобильном секторе.

Воспользуйтесь преимуществами инноваций Knauf Industries – высококлассными компонентами из EPP для водородных топливных элементов

Электромобильность приносит не только новые возможности, но и вызовы. Для их реализации необходимы самые передовые решения. Опыт Knauf Automotive позволяет нам создавать инновации, которые помогают не только построить новую автомобильную отрасль, но и усовершенствовать существующие решения. Наша продукция предназначена для поддержки экологических решений. Мы стремимся предоставлять решения, пригодные для вторичной переработки и обеспечивающие добавленную стоимость на многих уровнях для клиентов.

Что касается водородных двигателей, то мы разработали высокотехнологичные решения с использованием таких материалов, как EPP. Перечень преимуществ EPP в защите купола для водородных судов является длинным.

Наиболее важным из них является амортизация ударов, так как основной задачей этой части является выполнение требований R134, который является регулированием для водородных суден. Детали из вспененного полипропилена должны быть стойкими к многократным ударам.

Другими ключевыми характеристиками компонентов из пенополипропилена для водородных сосудов являются:

  • Легкость (детали с высоким рассеиванием энергии).
  • Большой диапазон рабочих температур
  • Химическая инерция
  • Простота сборки
  • Может поглощать изменение размеров сосудов

Те же самые характеристики делают EPP идеальным решением и для другого сектора «зеленой» мобильности – компонентов аккумуляторных батарей. Они позволяют снизить отрицательное влияние низких температур, которое негативно сказывается на их работе, без значительного увеличения веса автомобиля. Обеспечивая отличную электрическую и тепловую изоляцию, а также отличную ударопрочность, детали EPP являются важной частью решений, применяемых в электромобилях сейчас и будут применяться и в будущем.

Наши инженеры предлагают огромное количество различных решений для автомобильной промышленности, которые позволяют значительно улучшить функционирование электромобилей и автомобилей на водороде. Наш богатый опыт в сочетании с индивидуальным подходом позволяет нам сократить время вывода на рынок совершенно новых проектов, легко конфигурировать различные решения и быстро разрабатывать эффективные инновации, способствующие росту автомобильной промышленности в Европе и за ее пределами.

Преимущества водорода с точки зрения автомобилестроения

Это широко доступный, дешевый и эффективный элемент, поэтому уже сейчас стоит рассмотреть первоначальные мысли о моторе, в котором он будет использоваться. В настоящее время стоимость эксплуатации этого типа транспортных средств аналогична стоимости бензиновых автомобилей. Однако закупочная цена намного выше, а инфраструктура не так развита. Это те вопросы, которые, скорее всего, изменятся в будущем – и это будет значительным шагом на пути к улучшению экологической ситуации во всем мире.

Хотите получить более специализированные знания?

    No related articles

Технология водородных топливных элементов Cummins

Cummins стремится предоставить клиентам лучшие энергетические решения. В последнее время компания разрабатывает альтернативу дизельному двигателю — водородные элементы.

Экологически чистый, получаемый из возобновляемых источников энергии, водород не производит выбросов в атмосферу. Водород можно безопасно хранить или транспортировать. Его можно смешивать или использовать для создания углеводородного топлива. Благодаря постоянным исследованиям и инновациям водород стал важной частью в создании альтернативной энергетики. Cummins использует водородные технологии при создании механизмов для транзитных автобусов, грузовых автомобилей, автофургонов и пассажирских поездов.

Водородные топливные элементы запускаются даже в космосе — уже десятилетия назад водород стали использовать в качестве топлива космической программы НАСА. Поэтому неудивительно, что сегодня водород используется для обеспечения энергией таких крупных систем, как электростанции, и небольших систем, таких как портативные компьютеры. Новейшие водородные технологии позволяют поставлять достаточно энергии для пассажирских поездов и коммунальных электростанций.

Что такое водородные топливные элементы? Топливный элемент использует химическую энергию водорода, природного газа или другого углеводородного топлива для выработки электроэнергии. В отличие от батареи, система топливных элементов не хранит энергию. Она подает топливо и кислород так же, как и двигатель внутреннего сгорания, который за счет бензина или дизельного топлива и кислорода подает энергию.

Как работают водородные топливные элементы? Основная конструкция топливного элемента состоит из двух электродов (отрицательного и положительного), разделенных электролитом. Каждый топливный элемент имеет толщину всего несколько миллиметров, и сотни из них сложены вместе, образуя батарею топливных элементов.

Подача топлива, происходит из бака, прикрепленного к транспортному средству. Топливо подается на анод (отрицательный электрод), а кислород из атмосферы поступает на катод (положительный электрод). Существуют разные типы топливных элементов, и каждый из них использует свой процесс для создания электричества, но по большей части между электродами вводится катализатор, который заставляет электроны перемещаться по внешней цепи. Катализатор и создает электричество.

Каковы преимущества технологии водородных топливных элементов? Сегодня силовые агрегаты на топливных элементах имеют более высокую плотность энергии (по сравнению с электрическими батареями) и быстрее заправляются топливом, что делает их более подходящими для поездок с более длинными дневными маршрутами, которые не могут быть выполнены только с помощью батарей.

Чем примечателен каталог магазина?

Все для ремонта двигателя

В наличии комплектующие для всех моторов Cummins, Caterpillar, Perkins. Представлены оригинальные и аналоговые запчасти. Подобрать необходимую деталь не составит труда.

Огромное количество фильтров

Предлагаются воздушные, топливные и масляные фильтры брендов Cummins, Fleetguard, Donaldson, Baldwin, Sakura. Изделия обладают прекрасной адсорбцией.

Качественные масла

В продаже оригинальные моторные масла компании Valvoline, дочернего подразделения Cummins Inc.

ТОПЛИВНАЯ СИСТЕМА

Устройство топливной системы автомобиля на водороде
на примере SIDERA APUS

Электромобили на водородных топливных элементах в отличии от классических электромобилей, которые используют электрическую энергию, накапливаемую в аккумуляторе, вырабатывают свою собственную чистую энергию посредством химической реакции между водородом и кислородом в батарее топливных элементов.

Наша команда, основываясь на принципах импортозамещения, в течение нескольких лет исследовала и проектировала компоненты для создания инновационной силовой установки для отечественного водородного транспорта.

Электромобили на водородных топливных элементах в отличии от классических электромобилей, которые используют электрическую энергию, накапливаемую в аккумуляторе, вырабатывают свою собственную чистую энергию посредством химической реакции между водородом и кислородом в батарее топливных элементов.

Наша команда, основываясь на принципах импортозамещения, в течение нескольких лет исследовала и проектировала компоненты для создания инновационной силовой установки для отечественного водородного транспорта.

Батарея топливных элементов;
Буферная силовая АКБ (вторичный источник энергии);
Водородный композитный бак с системой подачи газа;
Система управления и контроля;
Преобразователь мощности;
Система подачи воздуха;
Система охлаждения.

Основные компоненты разработанной энергоустановки:

Схема водородного электромобиля SIDERA APUS

«Сердцем» энергоустановки является электрохимический генератор SEGH2, специально разработанный нами топливный элемент, в котором происходит химическая реакция между водородом из топливных баков и кислородом из окружающего воздуха.

В ходе реакции вырабатывается электричество, которое питает все системы автомобиля включая тяговые электромоторы, а единственным продуктом реакции является ВОДА.

Что не мало важно, избыточное тепло, вырабатываемое топливным элементом, можно использовать для обогрева салона в холодное время года, что значительно улучшает эксплуатационные характеристики по отношению к аккумуляторному электротранспорту.

Для хранения водорода используются специальные композитные баки, с массовой эффективностью 4-7%. Композитные баллоны имеют высокую эксплуатационную безопасность и соответствуют всем современным требованиям и стандартам безопасности.

Особенность таких баков состоит в том, что при критичном повреждении данные баллоны разгерметизируются без образования осколков, а газ при выходе быстро улетучится из-за высокой молекулярной скорости.

Композитные топливные баки способны поглотить в пять раз больше энергии удара, чем стальные, выдерживают большое давление, и на сегодняшний день являются самым безопасным решением для хранения водорода при высоком давлении.

Инвертор (преобразователь мощности) — электронное устройство, работающее по принципу DC-DC конвертер и обеспечивает изменение выходного напряжения топливного элемента до необходимого напряжения высоковольтной бортовой системы автомобиля.

У топливного элемента очень резкая вольтамперная кривая, которая усложняет работу со сторонними потребителями, для упрощения эксплуатации, и стабилизации рабочего напряжения, разрабатывается данное устройство. Блок преобразования электроэнергии стабилизирует рабочее напряжение и повышает его до необходимых 650 Вольт.

Вождение при более высоком напряжении позволяет более эффективно использовать электромотор, который будет выдавать больше мощности.

Система контроля или блок управления — ещё один ключевой элемент силовой установки водородного автомобиля. Данный блок отвечает за распределение энергии в системе, и подключает необходимые её элементы в зависимости от нагрузки.

Блок управления решает, в какие моменты использовать накопленную энергию из буферного аккумулятора, когда получать её непосредственно из топливного элемента, а когда задействовать все источники.

Специальное программное обеспечение, разработанное нашими программистами, и смарт-алгоритмы делают работу всех элементов высокоэффективной. Для лучшей эффективности блок расположен в составе топливного элемента.

Буферный аккумулятор или вторичный источник энергии подключается к работе при старте автомобиля, а также помогает в моменты резкого повышения мощности, например во время ускорения.

Аккумулятор способствует улучшению общей эффективности работы топливной системы автомобиля и экономии топлива, ведь накапливает энергию он во время рекуперативного торможения.

В водородном автомобиле аккумулятор малых размеров и обладает более длительным сроком службы из-за малых нагрузок, в отличие от классических электрокаров.

Для создания электромоторов мы использовали наши собственные, технологические разработки и ноу-хау. Моторы были тщательно протестированы для работы в самых различных условиях, что гарантирует их надёжность и производительность.

Благодаря специальному программному обеспечению все системы автомобиля работают слаженно и максимально эффективно, обеспечивая комфорт вождения инновационного транспорта.

При этом, разработанные нами компоненты силовой энергоустановки на основе водородных топливных элементов позволяют создавать различные виды транспорта: легковой, грузовой, железнодорожный и т.д.

стремление к совершенству

  • Галерея
  • Политика конфиденциальности
  • Пользовательское соглашение

© Все права защищены и принадлежат ООО Первая Инновационная Межотраслевая Компания Водородных Технологий «Русский Водород»

Топливные (водородные) элементы/ячейки

Компания Интех ГмбХ / LLC Intech GmbH на рынке инжиниринговых услуг с 1997 года, официальный многолетний дистрибьютор различных производителей промышленного оборудования, предлагает Вашему вниманию различные топливные (водородные) элементы/ячейки.

  • Топливные элементы/ячейки на расплаве карбоната
  • Топливные элементы/ячейки на основе фосфорной кислоты
  • Твердооксидные топливные элементы/ячейки
  • Топливные элементы/ячейки с прямым окислением метанола
  • Щелочные топливные элементы/ячейки
  • Полимерные электролитные топливные элементы/ячейки
  • Твердокислотные топливные элементы/ячейки

Топливный элемент/ячейка – это

Преимущества топливных элементов/ячеек

Топливный элемент / ячейка – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Топливный элемент включает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы/ячейки не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы/ячейки могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр., топливные элементы/ячейки не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибрации. Топливные элементы/ячейки вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов/ячеек является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе — являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы/ячейки собираются в сборки, а затем в отдельные функциональные модули.

История развития топливных элементов/ячеек

В 1950х и 1960х годах одна из самых ответственных задач для топливных элементов родилась из потребности Национального управления по аэронавтике и исследованиям космического пространства США (NASA) в источниках энергии для длительных космических миссий. Щелочной топливный элемент/ячейка NASA использует в качестве топлива водород и кислород, соединяя эти два химических элемента в электрохимической реакции. На выходе получаются три полезных в космическом полете побочных продукта реакции – электричество для питания космического аппарата, вода для питья и систем охлаждения и тепло для согревания астронавтов.

Открытие топливных элементов относится к началу XIX века. Первое свидетельство об эффекте топливных элементов было получено в 1838 году.

В конце 1930х начинается работа над топливными элементами со щелочным электролитом и к 1939 году построен элемент, использующую никелированные электроды под высоким давлением. В ходе Второй Мировой Войны разрабатываются топливные элементы/ячейки для подлодок британского флота и в 1958 году представлена топливная сборка, состоящая из щелочных топливных элементов/ячеек диаметром чуть более 25 см.

Интерес возрос в 1950-1960е годы, а также в 1980е, когда промышленный мир пережил нехватку топлива. В этот же период мировые страны также озаботились проблемой загрязнения воздуха и рассматривали способы экологически чистого получения электроэнергии. В настоящее время технология производства топливных элементов/ячеек переживает этап бурного развития.

Принцип работы топливных элементов/ячеек

Топливные элементы/ячейки вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.

Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород — на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H2 => 4H+ + 4e —
Реакция на катоде: O2 + 4H+ + 4e — => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

Типы и разновидность топливных элементов/ячеек

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливного элемента зависит от его применения.

Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять «внутреннее преобразование» топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы/ячейки на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO3 2- ). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO3 2- + H2 => H2O + CO2 + 2e —
Реакция на катоде: СO2 + 1/2O2 + 2e — => CO3 2-
Общая реакция элемента: H2 (g) + 1/2O2 (g) + CO2 (катод) => H2O(g) + CO2 (анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 3,0 МВт. Разрабатываются установки с выходной мощностью до 110 МВт.

Топливные элементы/ячейки на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H3PO4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов, в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H2 => 4H + + 4e —
Реакция на катоде: O2 (g) + 4H + + 4e — => 2 H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 500 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Твердооксидные топливные элементы/ячейки (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О 2- ).

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О 2- ). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H2 + 2O 2- => 2H2O + 4e —
Реакция на катоде: O2 + 4e — => 2O 2-
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60-70%. Высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 75%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы/ячейки с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH3OH) окисляется при наличии воды на аноде с выделением СО2, ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH3OH + H2O => CO2 + 6H + + 6e —
Реакция на катоде: 3/2O2 + 6 H + + 6e — => 3H2O
Общая реакция элемента: CH3OH + 3/2O2 => CO2 + 2H2O

Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы/ячейки (ЩТЭ)

Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°C до 220°C. Носителем заряда в ЩТЭ является гидроксильный ион (ОН — ), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H2 + 4OH — => 4H2O + 4e —
Реакция на катоде: O2 + 2H2O + 4e — => 4 OH —
Общая реакция системы: 2H2 + O2 => 2H2O

Достоинством ЩТЭ является то, что эти топливные элементы — самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов — такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO2, который может содержаться в топливе или воздухе. CO2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H2O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы/ячейки (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H2O + (протон, красный) присоединяется к молекуле воды). Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°C.

Твердокислотные топливные элементы/ячейки (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO4) не содержит воды. Рабочая температура поэтому составляет 100-300°C. Вращение окси анионов SO4 2- позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.

Различные модули топливных элементов. Батарея топливного элемента

  1. Батарея топливных элементов
  2. Остальное оборудование, работающее при высокой температуре (интегрированный парогенератор, камера сгорания, устройство смены теплового баланса)
  3. Теплостойкая изоляция

Модуль топливного элемента

Сравнительный анализ типов и разновидностей топливных элементов

Инновационные энергосберегающие коммунально-бытовые теплоэнергетические установки обычно построены на твердооксидных топливных элементах (ТОТЭ), полимерных электролитных топливных элементах (ПЭТЭ), топливных элементах на фосфорной кислоте (ФКТЭ), топливных элементах с мембраной обмена протонов (МОПТЭ) и щелочных топливных элементах (ЩТЭ). Обычно имеют следующие характеристики:

Наиболее подходящими следует признать твердооксидные топливные элементы (ТОТЭ), которые:

  • работают при более высокой температуре, что уменьшает необходимость в дорогих драгоценных металлах (таких, как платина)
  • могут работать на различных видах углеводородного топлива, в основном на природном газе
  • имеют большее время запуска и потому лучше подходят для длительного действия
  • демонстрируют высокую эффективность выработки электроэнергии (до 70%)
  • из-за высоких рабочих температур установки могут быть скомбинированы с системами обратной теплоотдачи, доводя общую эффективность системы до 85%
  • имеют практически нулевой уровень выбросов, работают бесшумно и предъявляют низкие требованиями к эксплуатации в сравнении с существующими технологиями выработки электроэнергии

Поскольку малые теплоэнергетические установки могут подключаться к обычной сети подачи газа, топливные элементы не требуют отдельной системы подачи водорода. При использовании малых теплоэнергетических установок на основе твердооксидных топливных ячеек вырабатываемое тепло может интегрироваться в теплообменники для нагрева воды и вентиляционного воздуха, увеличивая общую эффективность системы. Эта инновационная технология наилучшим образом подходит для эффективной выработки электричества без необходимости в дорогой инфраструктуре и сложной интеграции приборов.

Применение топливных элементов/ячеек

Применение топливных элементов/ячеек в системах телекоммуникации

Вследствие быстрого распространения систем беспроводной связи во всем мире, а также роста социально-экономических выгод технологии мобильных телефонов, необходимость надежного и экономичного резервного электропитания приобрела определяющее значение. Убытки электросети на протяжении года вследствие плохих погодных условий, стихийных бедствий или ограниченной мощности сети представляют собой постоянную сложную проблему для операторов сети.

Традиционные телекоммуникационные решения в области резервного электропитания включают батареи (свинцово-кислотный элемент аккумуляторной батареи с клапанным регулированием) для резервного питания в течение непродолжительного времени и дизельные и пропановые генераторы для более продолжительного резервного питания. Батареи являются относительно дешевым источником резервного питания на 1 – 2 часа. Однако батареи не подходят для более продолжительного резервного питания, так как их техническое обслуживание является дорогим, они становятся ненадежными после долгой эксплуатации, чувствительны к температурам и опасны для окружающей среды после утилизации. Дизельные и пропановые генераторы могут обеспечить продолжительное резервное электропитание. Однако генераторы могут быть ненадежными, требуют трудоемкого технического обслуживания, выделяют в атмосферу высокие уровни загрязнений и газов, вызывающих парниковый эффект.

С целью устранения ограничений традиционных решений в области резервного электропитания была разработана инновационная технология экологически чистых топливных ячеек. Топливные ячейки надежны, не производят шума, содержат меньше подвижных деталей, чем генератор, имеют более широкий диапазон рабочих температур, чем батарея: от -40°C до +50°C и, как результат, обеспечивают чрезвычайно высокий уровень энергосбережения. Кроме того, затраты на такую установку на протяжении срока эксплуатации ниже затрат на генератор. Более низкие затраты на топливную ячейку являются результатом всего одного посещения с целью технического обслуживания в год и значительно более высокой производительностью установки. В конце концов, топливная ячейка представляет собой экологически чистое технологическое решение с минимальным воздействием на окружающую среду.

Установки на топливных ячейках обеспечивают резервное электропитание для критически важных инфраструктур сети связи для беспроводной, постоянной и широкополосной связи в системе телекоммуникаций, в диапазоне от 250 Вт до 15 кВт, они предлагают множество непревзойденных инновационных характеристик:

  • НАДЕЖНОСТЬ – малое количество подвижных деталей и отсутствие разрядки в режиме ожидания
  • ЭНЕРГОСБЕРЕЖЕНИЕ
  • ТИШИНА – низкий уровень шумов
  • УСТОЙЧИВОСТЬ – рабочий диапазон от -40°C до +50°C
  • АДАПТИВНОСТЬ – установка на улице и в помещении (контейнер/защитный контейнер)
  • ВЫСОКАЯ МОЩНОСТЬ – до 15 кВт
  • НИЗКАЯ ПОТРЕБНОСТЬ В ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ – минимальное ежегодное техническое обслуживание
  • ЭКОНОМИЧНОСТЬ — привлекательная совокупная стоимость владения
  • ЭКОЛОГИЧЕСКИ ЧИСТАЯ ЭНЕРГИЯ – низкий уровень выбросов с минимальным воздействием на окружающую среду

Система все время чувствует напряжение шины постоянного тока и плавно принимает критические нагрузки, если напряжение шины постоянного тока падает ниже заданного значения, определенного пользователем. Система работает на водороде, который поступает в батарею топливных ячеек одним из двух путей – либо из промышленного источника водорода, либо из жидкого топлива из метанола и воды, при помощи встроенной системы риформинга.

Электричество производится батареей топливных элементов в виде постоянного тока. Энергия постоянного тока передается на преобразователь, который преобразует нерегулируемую электроэнергию постоянного тока, исходящую от батареи топливных ячеек, в высококачественную регулируемую электроэнергию постоянного тока для необходимых нагрузок. Установка на топливных ячейках может обеспечивать резервное электропитание на протяжении многих дней, так как продолжительность действия ограничена только имеющимся в запасе количеством водорода или топлива из метанола/воды.

Топливные элементы предлагают высокий уровень энергосбережения, повышенную надежность системы, более предсказуемые эксплуатационные качества в широком спектре климатических условий, а также надежную эксплуатационную долговечность в сравнении с комплектами батарей со свинцово-кислотными элементами с клапанным регулированием промышленного стандарта. Затраты на протяжении срока эксплуатации также более низкие, вследствие значительно меньшей потребности в техническом обслуживании и замене. Топливные ячейки предлагают конечному пользователю экологические преимущества, так как затраты на утилизацию и риски ответственности, связанные со свинцово-кислотными элементами, вызывают растущее беспокойство.

На эксплуатационные характеристики электрических батарей может отрицательно повлиять широкий спектр факторов, таких как уровень зарядки, температура, циклы, срок службы и другие переменные факторы. Предоставляемая энергия будет различной в зависимости от этих факторов, ее нелегко предсказать. Эксплуатационные характеристики топливной ячейки с мембраной обмена протонов (МОПТЯ) относительно не подвержены влиянию этих факторов и могут обеспечивать критически важное электропитание, пока есть топливо. Повышенная предсказуемость является важным преимуществом при переходе на топливные ячейки для критически важных сфер использования резервного электропитания.

Топливные элементы генерируют энергию только при подаче топлива, подобно газотурбинному генератору, но не имеют подвижных деталей в зоне генерирования. Поэтому, в отличие от генератора, они не подвержены быстрому износу и не требуют постоянного технического обслуживания и смазки.

Топливо, используемое для приведения в действие преобразователя топлива с повышенной продолжительностью действия, представляет собой топливную смесь из метанола и воды. Метанол является широкодоступным, производимым в промышленных масштабах топливом, которое в настоящее время имеет множество применений, среди прочего стеклоомыватели, пластиковые бутылки, присадки для двигателя, эмульсионные краски. Метанол легко транспортируется, может смешиваться с водой, обладает хорошей способностью к биоразложению и не содержит серы. Он имеет низкую точку замерзания (-71°C) и не распадается при длительном хранении.

Применение топливных элементов/ячеек в сетях связи

Сети засекреченной связи нуждаются в надежных решениях в области резервного электропитания, которые могут функционировать на протяжении нескольких часов или нескольких дней в чрезвычайных ситуациях, если электросеть перестала быть доступной.

При наличии незначительного числа подвижных деталей, а также отсутствии снижения мощности в режиме ожидания, инновационная технология топливных ячеек предлагает привлекательное решение в сравнении с существующими в настоящий момент системами резервного электропитания.

Самым неопровержимым доводом в пользу применения технологии топливных ячеек в сетях связи является повышенная общая надежность и безопасность. Во время таких происшествий, как отключения электропитания, землетрясения, бури и ураганы, важно, чтобы системы продолжали работать и были обеспечены надежной подачей резервного электропитания на протяжении длительного периода времени, независимо от температуры или срока эксплуатации системы резервного электропитания.

Линейка устройств электропитания на основе топливных ячеек идеально подходит для поддержки сетей засекреченной связи. Благодаря заложенным в конструкцию принципам энергосбережения, они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до нескольких дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт.

Применение топливных элементов/ячеек в сетях передачи данных

Надежное электропитание для сетей передачи данных, таких как сети высокоскоростной передачи данных и оптико-волоконные магистрали, имеет ключевое значение во всем мире. Информация, передаваемая по таким сетям, содержит критически важные данные для таких учреждений, как банки, авиакомпании или медицинские центры. Отключение электропитания в таких сетях не только представляет опасность для передаваемой информации, но и, как правило, приводит к значительным финансовым потерям. Надежные инновационные установки на топливных ячейках, обеспечивающие резервное электропитание, предоставляют надежность, необходимую для обеспечения непрерывного электропитания.

Установки на топливных ячейках, работающие на жидкой топливной смеси из метанола и воды, обеспечивают надежное резервное электропитание с повышенной продолжительностью действия, вплоть до нескольких дней. Кроме того, эти установки отличаются значительно сниженными требованиями в отношении технического обслуживания в сравнении с генераторами и батареями, необходимо лишь одно посещение с целью технического обслуживания в год.

Типичные характеристики мест применений для использования установок на топливных ячейках в сетях передачи данных:

  • Применения с количествами потребляемой энергии от 100 Вт до 15 кВт
  • Применения с требованиями в отношении автономной работы > 4 часов
  • Повторители в оптико-волоконных системах (иерархия синхронных цифровых систем, высокоскоростной Интернет, голосовая связь по IP-протоколу…)
  • Сетевые узлы высокоскоростной передачи данных
  • Узлы передачи по протоколу WiMAX

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для критически важных инфраструктур сетей передачи данных в сравнении с традиционными автономными батареями или дизельными генераторами, позволяя повысить возможности использования на месте:

  1. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.
  2. Благодаря тихой работе, малой массе, устойчивости к перепадам температур и функционированию практически без вибраций топливные элементы можно устанавливать вне здания, в промышленных помещениях/контейнерах или на крышах.
  3. Приготовления к использованию системы на месте быстры и экономичны, стоимость эксплуатации низкая.
  4. Топливо обладает способностью к биоразложению и представляет собой экологически чистое решение для городской среды.

Применение топливных элементов/ячеек в системах безопасности

Самые тщательно разработанные системы безопасности зданий и системы связи надежны лишь настолько, насколько надежно электропитание, которое поддерживает их работу. В то время как большинство систем включает некоторые типы систем резервного бесперебойного питания для краткосрочных потерь мощности, они не создают условия для более продолжительных перерывов в работе электросети, которые могут иметь место после стихийных бедствий или терактов. Это может стать критически важным вопросом для многих корпоративных и государственных учреждений.

Такие жизненно важные системы, как системы мониторинга и контроля доступа с помощью системы видеонаблюдения (устройства чтения идентификационных карт, устройства для закрытия двери, техника биометрической идентификации и т.д.), системы автоматической пожарной сигнализации и пожаротушения, системы управления лифтами и телекоммуникационные сети, подвержены риску при отсутствии надежного альтернативного источника электропитания питания продолжительного действия.

Дизельные генераторы производят много шума, их тяжело разместить, также хорошо известно о проблемах с их надежностью и техническим обслуживанием. В противоположность этому, установка на топливных ячейках, обеспечивающая резервное электропитание, не производит шума, является надежной, выбросы, выделяемые ей, равны нулю или весьма низки, ее легко установить на крыше или вне здания. Она не разряжается и не теряет мощность в режиме ожидания. Она обеспечивает непрерывную работу критически важных систем, даже после того, как учреждение прекратит работу и здание будет покинуто людьми.

Инновационные установки на топливных ячейках защищают дорогостоящие вложения критически важных сфер применения. Они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до многих дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт в сочетании с многочисленными непревзойденными характеристиками и, особенно, высоким уровнем энергосбережения.

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для использования в критически важных сферах применения, таких как системы обеспечения безопасности и управления зданиями, в сравнении с традиционными автономными батареями или дизельными генераторами. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.

Применение топливных элементов/ячеек в коммунально-бытовом отоплении и электрогенерации

На твердооксидных топливных ячейках (ТОТЯ) построены надежные, энергетически эффективные и не дающие вредных выбросов теплоэнергетические установки для выработки электроэнергии и тепла из широко доступного природного газа и возобновляемых источников топлива. Эти инновационные установки используется на самых различных рынках, от домашней выработки электричества до поставок электроэнергии в удаленные районы, а также в качестве вспомогательных источников питания.

Эти энергосберегающие установки производят тепло для отопления помещений и подогрева воды, а также электроэнергию, которая может быть использована в доме и отведена назад в электросеть. Распределенные источники выработки электроэнергии могут включать фотогальванические (солнечные) элементы и ветровые микротурбины. Эти технологии на виду и широко известны, однако их работа зависит от погодных условий и они не могут стабильно вырабатывать электроэнергию круглый год. По мощности теплоэнергетические установки могут варьироваться от менее чем 1 кВт до 6 МВт и больше.

Применение топливных элементов/ячеек в распределительных сетях

Малые теплоэнергетические установки предназначены для работы в распределенной сети выработки энергии, состоящей из большого числа малых генераторных установок вместо одной централизованной электростанции.

На рисунке ниже указаны потери эффективности выработки электроэнергии при ее выработке на ТЭЦ и передаче в дома через традиционные сети электропередач, используемые на данный момент. Потери эффективности при централизованной выработке включают потери с электростанции, низковольтной и высоковольтной передачи, а также потери при распределении.

Рисунок показывает результаты интеграции малых теплоэнергетических установок: электричество вырабатывается с эффективностью выработки до 60% на месте использования. В дополнение к этому, домохозяйство может использовать тепло, вырабатываемое топливными ячейками, для нагрева воды и помещений, что увеличивает общую эффективность переработки энергии топлива и повышает уровень энергосбережения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *